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Abstract: The recent developments in mineral processing led researchers to look for alternative methods 
and propose new mechanisms for enhancing the efficiency of relatively costly processes (e.g., flotation, 
aggregation), where especially dealing with fine particles. Finer the particles, the higher the role of their 
surface on their behavior and properties. The importance of particle morphology becomes even clearer 
when particle-particle and particle-bubble interactions are considered. In this study, the effect of particle 
shape “roundness” on the surface wettability and flotation response was investigated upon producing 
fine particles with the “abrasion blasting” method. In order to provide a fundamental perspective, 
adsorption measurements were also carried out along with the flotation experiments under the same 
conditions. In addition to these, zeta potential measurements were also carried out with both spherical 
and blasted particles as a function of collector concentration. The results suggested that the roundness 
of particles decreased up to a certain nozzle pressure value, which was followed by higher adsorption 
degrees and consequently higher flotation recoveries.  Additionally, settling rate tests were also 
performed with very fine material to show the effect of particle morphology on particle-particle 
interactions. The results showed that while lower settling rate values were obtained for spherical ones, 
higher values were obtained in the case of the ground and blasted samples in the presence of DI water. 
It was concluded from this study that the “Abrasive blasting method” could be an effective alternative 
for tuning the surface morphology of particles and their wettability, which in turn can affect the particle-
particle interactions in the system. 

Keywords: roundness, flotation, settling rate, energy barrier  

1. Introduction 

In mineral processing, size reduction, especially grinding, is the first step for producing particles of 
desired size and liberation before various enrichment methods. Although the size reduction to obtain 
the suitable size range for liberation and downstream processes is the main target in the grinding, its 
side effects on the particle surface, e.g., oxidation, roughness, shape factor, etc. should also be taken into 
consideration (Pourghahramani and Forsberg, 2005; Mahmoud, 2010). Due to different grinding 
mechanisms, each grinding method and type (wet or dry) have a specific effect on the surface roughness 
and the particle shape of the ground product. Therefore, the effect of different grinding conditions on 
particle morphology has been investigated by several researchers for various type of minerals such as 
barite (Ulusoy et al., 2003; Turk et al. 2018), talc (Yekeler et al., 2004), wollastonite (Little et al., 2015), 
glass bead (Rezai et al., 2010; Verelli et al., 2014; Hassas et al., 2016; Guven et al., 2016), quartz (Ulusoy 
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et al., 2004; Guven et al., 2015), alumina (Guven et al., 2016), and gold (Wotruba et al., 2015). Moreover, 
researchers have also related these variations of the particle morphology to the wettability through 
contact angle measurements on the mineral surfaces (Drelich and Marmur, 2017; Feng and Nguyen, 
2017). In addition to minerals, researchers have also shown that low ash coke particles can be better 
floated when they are more angular (Rong et al., 2019). Although the role of mineral density and particle 
size is known to affect the flotation rate constant (Eskanlou et al., 2018a) recent studies on the 
contribution of shape factor on flotation recovery reported that the flotation kinetics and the rate 
constant of angular particles were higher than that of spherical ones (Yin et al., 2018). Consequently, the 
results from various studies indicate that during the grinding to achieve the required liberation of the 
valuables from gangue minerals, with appropriate conditions and parameters of the system, the shape 
of the mineral particles can be tailored to achieve better particle-particle and particle-bubble interactions 
which can be of enormous significance in flotation process (Koh et al., 2009; Albijanic et al., 2012; Guven 
et al., 2015; Eskanlou et al., 2019a). Investigations on possible alternative methods to control and alter 
the particle shape and morphology during the grinding can provide new insight and a different point 
of view to understand the importance and role of these effects in flotation. These studies also lead to a 
clear understanding of how to tune conditions with such surface modifications to achieve the best 
efficiency in enrichment (Guven et al. 2015; Guven et al., 2016; Hassas et al., 2016; Eskanlou et al., 2018; 
Xia et al., 2018). 

Abrasive blasting of particles is a technique with wide applications in industry and commercially is 
used (as sandblasting) for cleaning or removal of layers from surfaces. The mechanism of this technique 
is to accelerate the particles, e.g., sand, using air pressure and spray them towards the surface with high 
speed where they collide and chip a layer off the surface. It should be noted that the particles during 
the blasting, also chip and break, which results in surface modification of these particles. Consequently, 
the blasting can be used for particle surface and morphology alteration by adjusting the operating 
parameters such as blasting distance, nozzle diameter, and pressure (Djurovic and Jean, 1999; Jianxin 
and Taichiu, 2000). To the best of the authors’ knowledge, only a few works have been reported to this 
alternative method to modify the particle morphology and their subsequent flotation. Guven et al. 
(2015) showed that the blasting not only produces more angular quartz particles but also improves 
flotation recoveries. In another study from the same group, better flotation results were obtained for 
blasted talc mineral which was more angular than un-blasted talc particles (Guven et al., 2015). 
Considering its industrial applicability in mineral processing, a thorough study on this method would 
provide an opportunity of improving the hydrophobicity of particles and accordingly achieving higher 
flotation recoveries and settling rate (upon coagulation) with lesser chemical consumption. 

In this study, the blasting method with various parameters was utilized to change the morphology 
and roundness of glass beads to investigate the effects of particle shape and morphology on their 
flotation recovery and settling rate in the presence of hexadecyl trimethyl ammonium bromide (HTAB). 
Additionally, classical DLVO theory was also employed to further the theoretical analysis of the 
particle-particle interactions upon surface modification. 

2. Materials and methods 

2.1. Materials 

The glass bead particles used in this study were standard safety glass beads in the size range of 90×700 
µm obtained from Potters Industries., USA. The chemical analysis of the sample performed by the X-
ray fluorescence (XRF) technique is presented in Table. 1.  

The glass bead particles were first treated with an acidic solution (2.5 v/v % H2SO4 (Sigma Aldrich, 
(95-98 % Purity)) followed by a basic solution (2.5 w/v % NaOH (Riedel de Haen, >97 % Purity) as 
suggested in previous work (Hassas et al., 2016). Finally, the samples were washed with distilled water 
(Ocean Reverse Osmosis System, Turkey) The pH  of the  bulk  solution  was  controlled before and after 

Table 1. Chemical content of the glass bead samples 

Component Si Na Ca MgO Al Fe 
Ratio (%) 61.3 13.1 14.8 3.8 6.0 1.0 
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the washing process to prevent any further contamination. The slurry was subsequently filtered and 
dried at 85 ºC in an oven overnight. Before the experiments, the sample was screened through 150 and 
106 µm sieves to obtain a 150×106 µm size fraction for the blasting, image analysis, adsorption, flotation, 
and settling rate tests. Hexadecyl trimethyl ammonium bromide (HTAB, 99.9%) from Merc Chemicals 
was used as a collector and distilled water (18 MΩ.cm) was produced in the laboratory using a single 
distilled water purification system (Ocean Reverse Osmosis System, Turkey). 

2.2.    Methods 

2.2.1. Abrasive blasting 

As discussed before, grinding is one of the widely used methods for not only size reduction but also 
changing the surface of the particles in mineral processing (Ulusoy et al., 2003). In this study, in addition 
to grinding for size reduction, the blasting method was used to modify the morphology of the glass 
beads while keeping the particle size constant. Details on the method and procedure are given 
elsewhere (Guven et al., 2015). The schematic presentation of the experimental setup is shown in Fig. 1. 

 

Fig. 1. Experimental setup for particle blasting 

As depicted in Fig. 1, in order to modify the shape of particles, only nozzle pressure was controlled 
and changed in the range of 1 to 6 bar while the values of aforementioned parameters such as nozzle 
diameter (2 mm), feed rate (~60 g/min), and the distance between blasted surfaces and nozzle (19 cm) 
were taken constantly concerning the reported values in a recent study (Guven et al., 2015). Depending 
on the selected pressure, the velocity of the air coming out of the nozzle varies, so does the velocity of 
the particle. It should be noted that the trajectory of particles traveling towards the surface was 
perpendicular to the surface. As a result, the intensity of the collision between the particle (glass beads) 
and the hard plate is a function of the pressure difference which results in shape and roughness change. 

2.2.2. Image analysis 

The images of blasted glass beads were taken by binocular microscope (20X magnification) and 
processed using Leica Q-Win image analysis software. As reported in the literature, many parameters, 
such as elongation, aspect ratio, relative width, roundness, jaggedness, and chunkiness can be 
considered for evaluation of particle shape (Ulusoy et al., 2003; Yekeler et al., 2004; Rezai et al., 2010; 
Mahmoud, 2010; Eskanlou et al., 2019b). However, as extensively assessed in our previous studies, in 
research related to the flotation, roundness, and roughness can be considered as the most important 
parameters that influence the particle-particle and particle-bubble interactions (Guven et al., 2016; 
Hassas et al., 2016; Karakas and Hassas, 2016; Eskanlou et al., 2020). Therefore, in this study, the 
roundness of at least 300 particles was used for the characterization of the morphology and correlation 
of these effects with particle behavior in flotation and settling rates. The value of this parameter was 
calculated using Eq. 1 (Forsberg et al., 1990; Ulusoy et al., 2003). 

𝑅 = #	%	&
'(
	                                                                              (1) 

where, A and p are the surface area and the perimeter of the particle, respectively. As the roundness (R) 
decreases the shape of the particle deviates from the round shape (Hassas et al., 2016). 

  

Feed (glass bead) 

Blasted particles 
collection bin 

Hard block 
Shooting 
Nozzle 

High pressure air 



160 Physicochem. Probl. Miner. Process., 57(2), 2021, 157-168 
 

   
 

2.2.3. Zeta potential measurements 

The surface charge of both spherical and blasted glass beads was investigated by zeta potential 
measurements. The change in surface charge (zeta potential) of glass beads was carried out as a function 
of HTAB concentration with a microprocessor equipped Zeta-Meter 3.0+ (USA). All the measurements 
were carried out under 75 V and K cell factor of 0.71 cm−1 (Sans et al., 2017) and 10-3 mol/dm3 KCl as 
background electrolyte. A sample of 0.1 g glass bead (below 38 µm, with an average particle size of 13 
µm) was added to 100 cm3 distilled water with the desired collector concentration, and the suspension 
was mixed for 10 min for sufficient adsorption. Particles from the supernatant of the suspension were 
taken for the zeta potential measurements. The average of at least ten measurements for each dispersion 
was recorded.  

2.2.4. Adsorption measurements 

Shimadzu UV-Vis mini-120 spectrophotometer was used for the adsorption analysis of HTAB on glass 
beads of various morphology at 195 nm wavelength. A calibration curve was obtained based on the UV 
absorption characteristics of HTAB of known concentrations as shown in Fig. 2. A calibration line with 
an R2 of 0.9964 was obtained. 

 
Fig. 2. HTAB adsorption calibration curve 

For the adsorption experiments, 1 g of glass beads was placed in 100 cm3 of distilled water with 
predetermined HTAB concentration and stirred for 1 h at a constant room temperature of 25 ℃. Solids 
were then filtered, and the filtrate was tested with a UV spectrophotometer for the remaining HTAB 
concentration.  

2.2.5. Micro-flotation experiments 

Micro-flotation experiments were carried out using a 155 cm3 micro-flotation cell (30×220 mm) with a 
fused silica frit (pore size of ~15 µm), which was mounted on a magnetic stirrer as described in previous 
studies in more details (Guven et al., 2015). For each flotation experiment, 1 g of sample was conditioned 
in 100 cm3 distilled water with the desired collector concentration (1% wt.) for 10 min before the 
flotation. The solution was then transferred to the micro-flotation cell and floated for 1 min. The 
products were collected, dried, and weighed for further analyses. No frother was used in the flotation 
experiments. The pH of the glass bead suspension in distilled water was measured as 6.2 and did not 
show significant change during the experiments. High purity nitrogen gas was used for the aeration at 
a rate of 50 cm3/min. Flotation recovery (eq. 2) in experiments was calculated based on the weight ratio 
of floated concentrate (C) to feed (F). 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦(%) = 2
3
× 100                                                                  (2) 
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2.2.6. Settling experiments 

Spherical, ground, and blasted glass beads of the same particle size were used in the settling 
experiments. Both the spherical and ground particles were used to demonstrate the extreme two sides 
of the morphological range. In each settling rate experiment, a 100 cm3 measuring cylinder was filled 
with distilled water with the desired HTAB concentration containing 2 g glass bead making up 2 wt.% 
suspensions to provide free settling conditions as opposed to hindered settling which is prevalent in 
suspensions of above 15 wt.% (Taggart, 1945). The suspension was mixed three times by turning the 
graduated cylinder upside down to achieve a complete homogeneity without a pursuant flow regime 
inside the cylinder. This process was repeated before each run to standardize the conditions. The 
sedimentation mudline was recorded versus time as a function of HTAB concentration for the settling 
rate calculations. Each experiment was repeated thrice, and the average was taken as the final result. 
This procedure was repeated for both spherical and angular glass beads. 

3. Results and discussion 

3.1. Morphological characterization 

The effect of blasting on the particle morphology was investigated in terms of variation in the roundness 
of glass beads that were produced upon blasting. For comparison purposes with the previous reports, 
the effect of blasting on various minerals and particles is depicted in Fig. 3.  As seen from Fig. 3 that the 
roundness of the quarts particles of irregular shape did not change significantly by increasing nozzle 
pressure. However, at higher pressures, the roundness increased slightly, which can be ascribed to 
irregularities on the particle surface starting to chip off. Talc particles, on the other hand, showed a 
decrease in roundness in lower nozzle pressure, which increased again by increasing pressure (Guven 
et al., 2014, 2015c). This difference in the behavior of talc and quartz can be attributed to the minor 
difference in the density of the particles and the structural particle shape of the two minerals. The 
density of talc and quartz particles are 2.75 and 2.65 g/cm3, respectively. Particles of talc are flaky and 
with relatively lower density, hence, the effect of airflow on these particles can be more intense. As the 
airflow increases in the nozzle upon the increasing pressure, the drag force at higher pressure can affect 
the talc particles much easier compared to much heavier quartz particles. The drag force as a result of 
airflow can decrease the velocity and momentum of the talc particles and reduce the collision efficiency 
between the particles and surface.  
A similar procedure was followed in this study, the variation on roundness values for glass beads 
(150×106 µm) showed that the roundness decreased from 0.956 to 0.836 up to 5 bar nozzle pressure. The 
pattern of change in roundness in glass beads of this study shows a variation from the previous research 

 
Fig. 3. Roundness values of different minerals: Quartz (Guven et al., 2015b), talc (Guven et al., 2015c), and glass 
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(Guven et al., 2014). It should be noted that the quartz and talc particles in previous studies were ground 
to the target particle size, while in this study, the relatively bigger sample size was used to collect the 
target particle size using a sieve without grinding or size reduction in particles to preserve the original 
roundness of the glass beads. It is known that, during the grinding, the particle shape deviates from 
roundness due to the combination of different mechanisms such as abrasion, compression, which can 
result in sharp edges on the particles (Sirkeci et al., 2018). These edges and surface imperfections of the 
ground particles soften during the blasting, which can lead to an increase in roundness as the nozzle 
pressure increases. Consequently, the results shown in Fig. 3 indicated that the roundness of the quartz 
particles slightly increases at higher nozzle pressures. For other experiments in this study, the blasted 
glass bead particles were produced at 5 bar nozzle pressure. 

3.2. Zeta potential measurements 

The zeta potential measurements were carried out as a function of HTAB concentration, and a gradual 
increase in surface charge was observed upon increasing collector concentration up to 10-4 mol/dm3. As 
seen from Fig. 4, while the zeta potential of untreated glass beads at pH 6 was measured as about -20 
mV, an expected raise up to +30 mV was observed as a function of HTAB concentration. This trend can 
be well explained by the coverage of glass bead surfaces with the oppositely charged cationic reagent. 
Similar trends were also reported for other types of amine surfactants such as DAH (dodecyl amine 
hydrochloride) on glass surfaces. Asmatulu and Yoon (2012) reported that at 10-4 mol/dm3 DAH 
concentration, the surface charge of the glass increased from -60 mV to positive values while the contact 
angle also increased from 4º to 71º as an indication of increasing hydrophobicity and surface coverage 
by amine molecules. The increase in the zeta potential of the blasted glass beads was found to be greater 
at higher HTAB concentration compared to that of round glass beads. This can be attributed to the 
relatively higher specific surface area of blasted glass beads, which in turn results in higher HTAB 
coverage on the surface. A similar trend can be seen in adsorption experiments as well (Section 3.3). 

 
Fig. 4. Zeta potential of spherical and angular glass bead as a function of HTAB concentration at pH 6 

3.3. Adsorption measurements 

As well documented in the literature (Koh et al., 2009; Rezai et al., 2010), flotation recovery values are 
generally aligned with the reagent adsorption values, where higher adsorption also indicates higher 
flotation recoveries up to a critical concentration after which double layer formation on the surface 
renders it hydrophilic again. As discussed earlier, angularity in particles generally increases after the 
blasting process at different nozzle pressures (Fig. 3). It is noteworthy that the adsorption of HTAB 
molecules on the glass beads also follows the same pattern as roundness, however in reverse (Fig. 5). 
The adsorption of HTAB on the glass bead reaches a maximum at the nozzle pressure that produced the 
lowest roundness. This can be attributed to the specific surface area of the particles, as it is well-known 
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that the smallest ratio of surface area to the volume can be achieved at spherical particles. Hence, any 
deviation from sphericity will increase the specific surface area of the particles and in turn adsorption 
capacity, higher hydrophobicity, and a relatively higher probability of bubble-particle attachment in 
flotation. 

 
Fig. 5. Adsorption of surfactant on glass bead particles as a function of nozzle pressure 

3.4. Micro-flotation experiments 

Before the experiments with blasted materials, a series of micro-flotation tests were carried out as a 
function of HTAB concentration with spherical glass beads. The results indicated that the maximum 
recovery of ~70% was obtained at 10-4 mol/dm3 HTAB concentration followed by a decrease at higher 
concentrations. This concentration coincides well with the surface charge results as the zeta potential of 
the glass beads turns positive at HTAB concentration above 10-4 mol/dm3 (Fig. 4). Bilayer adsorption 
and consequent decrease in hydrophobicity and flotation recovery have previously been reported in the 
literature (Somasundaran and Krishnakumar, 1997). Similar findings were also reported in other studies 
for quartz with dodecyl amine (Yoon and Yordan, 1990; Guven et al., 2015). Considering these results, 
two concentrations, i.e., 10-6 mol/dm3 and 10-5 mol/dm3, were selected for the maximum and minimum 
flotation recovery points to investigate the effect of blasting and shape factor.   

 
Fig. 6. The correlation between roundness and flotation recovery as a function of blasting pressure 
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As shown in Fig. 6, a steady increase in the flotation recovery at constant HTAB concentration was 
obtained for the particles blasted up to the 5 bars nozzle pressure for both concentrations. In other 
words, while the flotation recovery at 10-6 mol/dm3 HTAB concentration was 15% for spherical particles, 
it dramatically increased to 38% after the blasting. Likewise, for a constant 10-5 mol/dm3 HTAB 
concentration, the flotation recovery increased from 40% to over 64% by increasing the nozzle pressure 
in blasting. These findings suggest that the flotation characteristics of particles at a given collector 
concentration can be optimized by controlling their shape factor during the grinding or other pre-
processing practices. As mentioned earlier, similar trends were also reported previously for products of 
various grinding methods and minerals (i.e., talc, calcite, barite, quartz, coal, and chromite) (Ulusoy et 
al., 2003; Yekeler et al.; 2004; Koh et al., 2009; Rezai et al., 2010; Verelli et al., 2014; Little et al., 2015; 
Guven et al., 2016). Comparison of the flotation recovery values with particle roundness for various 
nozzle pressures illustrates that there is a well-established correlation between the two parameters (Figs. 
3, 5, and 6). This indicates that the shape factor has a major role in the flotation response of the particles, 
which can outplay other weaker possible parameters in the process. 

3.5. Settling experiments 

For the settling experiments, in addition to distilled water, two different HTAB concentrations of 10-5 
mol/dm3 and 10-4 mol/dm3 were selected to provide a comparison basis to the flotation recovery data. 
In these experiments, in addition to blasted and spherical particles, angular ones were also used to 
represent the effect of morphology on coagulation characteristics and therefore settling rate of the 
particles. The results of these tests are shown in Fig. 7. From the settling rate of the particles in distilled 
water, it is evident that the blasted and ground particles show a faster settling rate compared with that 
of spherical particles. This phenomenon has well been documented for the irregular-shape particles 
(e.g., ground particles) to exhibit lower resistance to the drag force in the motion in a fluid (Tran-Cong 
et al., 2004). 

As shown in Fig. 7, it was found that the settling rate for all particles increases in presence of HTAB. 
It is well-known that the adsorption of HTAB on the particles renders the surface hydrophobic, which 
can result in further coagulation of the particles. Newly formed larger coagulated particles would 
become denser and heavier, which results in a faster settling rate of these particles. It is clear that, when 
the particles coagulate, the effective surface to volume ratio reduces, so does the effect of surface and 
morphology on the settling. This fact results in breaking the pattern of settling which was observed in 
distilled water. It is noteworthy that the settling rate at 10-5 mol/dm3 HTAB was higher than that in 10-

4 mol/dm3 HTAB for all particles. This is in good agreement with other results reported in this study 
that the 10-4 mol/dm3 HTAB level is above the optimum concentration of collector molecules on the 
particle surfaces. Since the blasted and ground particles have a higher specific surface area, and higher 
adsorption capacity (Fig. 5) compared with the spherical particles, a significant amount of this excess 
HTAB concentration at 10-4 mol/dm3 HTAB can be consumed by these particles due to higher 
adsorption capacity. Consequently, the decrease in the settling rate in 10-4 mol/dm3 HTAB for the 
spherical particles is sharper than that for the blasted and ground particles, respectively. 

3.6. Energy barrier analysis 

As well known, in classical DLVO theory, the total DLVO energy component includes the sum of 
attractive van der Waals (VvdW) and repulsive electrostatic forces (VEDL) (Mao et al., 1999). However due 
to its short effective range, in most of the systems, the energy barrier height is dominated by only the 
influence of electrostatic forces while vdW forces remain negligible. In this context, the key point to pay 
attention is to the calculation of the surface potentials of particles that are the main variable parameter 
on the variation of energy barriers (Guven et al., 2015). The correlation of these values with their 
corresponding settling rates has not been studied in detail. Therefore, in this study, the extent of particle-
particle interactions was evaluated to explain their coagulation mechanism as a function of collector 
concentration. 

The van der Waals and electrical double layer forces were calculated according to a derivative of the 
classical DLVO model specifically developed for explaining the interactions between polystyrene and 
quartz surfaces (Suresh and Walz, 1996).  The interactions were calculated via Eqs. 3 and 4. 
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Fig. 7. The settling rate of spherical and angular glass beads as a function of HTAB concentration 
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where A is the Hamaker constant, R is the radius of the spherical particle (µm), λ is the characteristic 
wavelength, h is the separation distance (nm) as measured from the particle surface. Eq. 5 given below 
describes the electrical double layer forces: 
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where ψ1 and ψ2 are the surface potentials of the gas bubble and particle, respectively, k is the Boltzmann 
constant (1.38×10-23 m2 kg s-2K-1), e is the charge of a proton (1.602×10-19 C), T is the temperature (298 K), 
κ-1 is the Debye length, ε is the bulk dielectric constant (80), ε0 is the permittivity of free space (8.85×10-

12 C2J-1m-1). 
Energy barrier between particles as a function of distance for various HTAB concentrations is 

presented in Fig. 8. The results in Fig. 8 clearly showed that the energy barrier values exhibited a 
decrease with the increasing HTAB concentration. Thus, these results were somehow in line with their 
settling rate data presented in Fig 7. If the minimum and maximum values were considered for each 
parameter (4.64×10-16 kT/µm at 10-4 mol/dm3 HTAB and 7.40×10-16 kT/µm at 10-6 mol/dm3 HTAB), 
while the lower settling rate values (14.8 mm/min for 10-4 mol/dm3 HTAB) obtained at low energy 
barrier height value of 4.64×10-16 kT/µm, higher values such as 7.40×10-16 kT/µm were calculated for 
higher  settling  rate  as  9.6 mm/min.  These  values  were  in  line with those reported in recent literature  
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Fig. 8.  Energy barrier between particles as a function of distance for various HTAB concentrations 

where higher flotation kinetics were obtained at lower energy barrier heights. In other words, the 
flotation kinetics rate was 2.0 at the 40 kT/µm energy barrier whereas it was 0.9 at 100 kT/µm (Guven 
et al., 2015). Similar dependencies were also reported for the particle-particle interactions for coal-water 
slurries (Guven et al., 2016) where at higher reagent regimes the calculated energy barrier exhibited its 
minimum and due to increasing particle-particle interactions, the viscosity of suspensions became very 
high.  Waltz et al. (1996) showed that with the increase of only the radius of asperities on surfaces from 
0 to 40 nm, the secondary potential energy minimum decreased from 0.64 to 0.31 while the location of 
minimum was shifted from 44 to 70 nm indicating closer interactions between each surface. In another 
study by Bendersky (2013), it was found that decreasing the particle size from 5 µm to 0.5 µm resulted 
in lower energy barriers which were attributed to the attraction of smaller particles to the surfaces based 
on the decreasing zone of electrostatic influence. Considering that finding related to the effects of 
different parameters on interaction energy barriers, it can be suggested that better particle-particle 
interactions in the presence of higher collector concentrations could be obtained, and this would 
concurrently be followed by higher settling rates and energy barrier heights (Fig. 9).  

As shown in Fig. 9, the settling rate increases at the concentrations where the energy barrier is low, 
which results in easier coagulation of the particles. On the other hand, the higher energy barrier 
prevents the coagulation of particles and consequently leads to better suspension and lower settling 
rates. 

 
Fig. 9.  Energy barrier calculation as a function of HTAB concentration 
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4. Conclusions 

In this study, the contribution of the abrasive blasting method on morphological features of glass bead 
particles on their flotation and settling characteristics was extensively investigated along with the zeta 
potential and adsorption tests. The results of these tests showed that while the roundness of spherical 
particles was measured as 0.956 before the blasting experiments, it gradually decreased to 0.854 upon 
applying 5 bars of blasting. Then, the flotation experiments were carried out with these blasted particles 
at 10-5 and 10-6 mol/dm3 HTAB concentrations and yielded the flotation recoveries of 15.62 % and 39.97 
% for un-blasted particles, and they increased up to 38.0 % and 64.3 % upon blasting at 5 bars. 
Accordingly, while the adsorption rate was measured as 1.08x10-6 mol/g for un-blasted particles, it 
increased to 5.26x10-6 mol/g for the particles blasted at 5 bars. This finding, in turn, showed that tuning 
the morphology of particles would also enhance the adsorption of collectors on their surfaces and 
concurrently their flotation characteristics. The settling characteristics of un-blasted and blasted 
particles also indicated that while the settling rate was found as 16.126 mm/min for un-blasted particles 
under 10-5 mol/dm3 HTAB concentration, it increased to 18.243 mm/min for blasted particles at 5 bars 
under the same conditions. Thus, the results of these series of tests also showed that the morphology 
not only changed the particle-bubble interactions but also particle-particle interactions which were then 
proved by theoretical energy barrier calculations. The results of these calculations also showed that 
while the energy barrier between two particles were 7.40 kT/µm x1016 at 10-6 mol/dm3 HTAB 
concentration, it gradually decreased to 4.63 kT/µm x1016 upon increasing the concentration to 10-4 

mol/dm3 and were inversely proportional to their settling rate which points to better particle-particle 
interaction. In conclusion, the results obtained from this study showed that tuning the morphology of 
glass bead particles with abrasive blasting method enhanced both particle-particle and particle-bubble 
interaction which in turn resulted in higher flotation recoveries and settling rate values. 
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